Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
JAMA Dermatol ; 158(6): 634-640, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-2127431

ABSTRACT

Importance: Treatment of actinic keratosis (AK) aims to prevent cutaneous squamous cell carcinoma (cSCC). However, whether AK can progress into invasive cSCC is a matter of debate, and little is known about the effect of treatment on preventing cSCC. Objectives: To evaluate the risk of invasive cSCC and factors that may contribute to increased risk in patients with multiple AKs. Design, Setting, and Participants: In this secondary analysis of a multicenter randomized clinical trial, 624 patients with a minimum of 5 AKs within an area of 25 to 100 cm2 on the head were recruited from the Department of Dermatology of 4 hospitals in the Netherlands. Long-term follow-up was performed from July 1, 2019, to December 31, 2020. Interventions: Patients were randomized to treatment with 5% fluorouracil, 5% imiquimod cream, methylaminolevulinate photodynamic therapy, or 0.015% ingenol mebutate gel. Main Outcomes and Measures: The primary outcome was the proportion of patients with invasive cSCC in the target area during follow-up. Secondary outcomes were the associations between risk of invasive cSCC and a priori defined potential prognostic factors, including type of treatment, severity of AK (Olsen grade), history of nonmelanoma skin cancer, and additional treatment. Results: Of the 624 patients (558 [89.4%] male; median age, 73 years [range, 48-94 years]) in the study, 26 were diagnosed with a histologically proven invasive cSCC in the target area during follow-up. The total 4-year risk of developing cSCC in a previously treated area of AK was 3.7% (95% CI, 2.4%-5.7%), varying from 2.2% (95% CI, 0.7%-6.6%) in patients treated with fluorouracil to 5.8% (95% CI, 2.9%-11.3%) in patients treated with imiquimod. In patients with severe AK (Olsen grade III), the risk was 20.9% (95% CI, 10.8%-38.1%), and the risk was especially high (33.5%; 95% CI, 18.2%-56.3%) in patients with severe AK who needed additional treatment. Conclusions and Relevance: In this secondary analysis of a randomized clinical trial, risk of invasive cSCC was highest in patients with Olsen grade III AK and was substantially increased in patients who received additional treatment. These patients should be closely followed up after treatment. Trial Registration: ClinicalTrials.gov Identifier: NCT02281682.


Subject(s)
Carcinoma, Squamous Cell , Keratosis, Actinic , Skin Neoplasms , Aged , Carcinoma, Squamous Cell/epidemiology , Carcinoma, Squamous Cell/etiology , Female , Fluorouracil/adverse effects , Humans , Imiquimod/therapeutic use , Keratosis, Actinic/therapy , Male , Skin Neoplasms/epidemiology , Skin Neoplasms/etiology , Treatment Outcome
2.
Cell reports methods ; 1(4), 2021.
Article in English | EuropePMC | ID: covidwho-1801491

ABSTRACT

Summary Multimodal advances in single-cell sequencing have enabled the simultaneous quantification of cell surface protein expression alongside unbiased transcriptional profiling. Here, we present LinQ-View, a toolkit designed for multimodal single-cell data visualization and analysis. LinQ-View integrates transcriptional and cell surface protein expression profiling data to reveal more accurate cell heterogeneity and proposes a quantitative metric for cluster purity assessment. Through comparison with existing multimodal methods on multiple public CITE-seq datasets, we demonstrate that LinQ-View efficiently generates accurate cell clusters, especially in CITE-seq data with routine numbers of surface protein features, by preventing variations in a single surface protein feature from affecting results. Finally, we utilized this method to integrate single-cell transcriptional and protein expression data from SARS-CoV-2-infected patients, revealing antigen-specific B cell subsets after infection. Our results suggest LinQ-View could be helpful for multimodal analysis and purity assessment of CITE-seq datasets that target specific cell populations (e.g., B cells). Graphical Highlights • LinQ-View integrates mRNA and protein expression data to reveal cell heterogeneity• LinQ-View prevents single dominant ADT features from affecting clustering• LinQ-View presents a quantitative purity metric for CITE-seq data• LinQ-View is specialized in handling CITE-seq data with fewer ADT features Motivation Multimodal single-cell sequencing enables multiple aspects for characterizing the dynamics of cell states and developmental processes. Properly integrating information from multiple modalities is a crucial step for interpreting cell heterogeneity. Here, we present LinQ-View, a computational workflow that provides an effective solution for integrating multiple modalities of CITE-seq data for downstream interpretation. LinQ-View balances information from multiple modalities to achieve accurate clustering results and is specialized in handling CITE-seq data with routine numbers of surface protein features. Li et al. present LinQ-View, a computational workflow that provides an effective solution for integrating multiple modalities of CITE-seq data and quantitative assessment of cluster purity. LinQ-View could be helpful for multimodal analysis and purity assessment of CITE-seq datasets that target specific cell populations.

3.
Cell Rep Methods ; 1(4): 100056, 2021 Aug 23.
Article in English | MEDLINE | ID: covidwho-1322060

ABSTRACT

Multimodal advances in single-cell sequencing have enabled the simultaneous quantification of cell surface protein expression alongside unbiased transcriptional profiling. Here, we present LinQ-View, a toolkit designed for multimodal single-cell data visualization and analysis. LinQ-View integrates transcriptional and cell surface protein expression profiling data to reveal more accurate cell heterogeneity and proposes a quantitative metric for cluster purity assessment. Through comparison with existing multimodal methods on multiple public CITE-seq datasets, we demonstrate that LinQ-View efficiently generates accurate cell clusters, especially in CITE-seq data with routine numbers of surface protein features, by preventing variations in a single surface protein feature from affecting results. Finally, we utilized this method to integrate single-cell transcriptional and protein expression data from SARS-CoV-2-infected patients, revealing antigen-specific B cell subsets after infection. Our results suggest LinQ-View could be helpful for multimodal analysis and purity assessment of CITE-seq datasets that target specific cell populations (e.g., B cells).

4.
Immunity ; 54(6): 1290-1303.e7, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1237724

ABSTRACT

Dissecting the evolution of memory B cells (MBCs) against SARS-CoV-2 is critical for understanding antibody recall upon secondary exposure. Here, we used single-cell sequencing to profile SARS-CoV-2-reactive B cells in 38 COVID-19 patients. Using oligo-tagged antigen baits, we isolated B cells specific to the SARS-CoV-2 spike, nucleoprotein (NP), open reading frame 8 (ORF8), and endemic human coronavirus (HCoV) spike proteins. SARS-CoV-2 spike-specific cells were enriched in the memory compartment of acutely infected and convalescent patients several months post symptom onset. With severe acute infection, substantial populations of endemic HCoV-reactive antibody-secreting cells were identified and possessed highly mutated variable genes, signifying preexisting immunity. Finally, MBCs exhibited pronounced maturation to NP and ORF8 over time, especially in older patients. Monoclonal antibodies against these targets were non-neutralizing and non-protective in vivo. These findings reveal antibody adaptation to non-neutralizing intracellular antigens during infection, emphasizing the importance of vaccination for inducing neutralizing spike-specific MBCs.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Host-Pathogen Interactions/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibody Formation/genetics , B-Lymphocytes/metabolism , Computational Biology/methods , Cross Reactions/immunology , Epitope Mapping , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/genetics , Humans , Immunodominant Epitopes/genetics , Immunologic Memory , Male , Neutralization Tests , Single-Cell Analysis/methods , Spike Glycoprotein, Coronavirus/immunology , Transcriptome
5.
J Med Ethics ; 47(1): 7-11, 2021 01.
Article in English | MEDLINE | ID: covidwho-1066922

ABSTRACT

Clinical trials emerged in rapid succession as the COVID-19 pandemic created an unprecedented need for life-saving therapies. Fair and equitable subject selection in clinical trials offering investigational therapies ought to be an urgent moral concern. Subject selection determines the distribution of risks and benefits, and impacts the applicability of the study results for the larger population. While Research Ethics Committees monitor fair subject selection within each trial, no standard oversight exists for subject selection across multiple trials for the same disease. Drawing on the experience of multiple clinical trials at a single academic medical centre in the USA, we posit that concurrent COVID-19 trials are liable to unfair and inequitable subject selection on account of scientific uncertainty, lack of transparency, scarcity and, lastly, structural barriers to equity compounded by implicit bias. To address the critical gap in the current literature and international regulation, we propose new ethical guidelines for research design and conduct that bolsters fair and equitable subject selection. Although the proposed guidelines are tailored to the research design and protocol of concurrent trials in the COVID-19 pandemic, they may have broader relevance to single COVID-19 trials.


Subject(s)
COVID-19 , Clinical Trials as Topic/ethics , Patient Selection/ethics , Bias , Bioethics , Humans , SARS-CoV-2
6.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: covidwho-1038406

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently causing a global pandemic. The antigen specificity of the antibody response mounted against this novel virus is not understood in detail. Here, we report that subjects with a more severe SARS-CoV-2 infection exhibit a larger antibody response against the spike and nucleocapsid protein and epitope spreading to subdominant viral antigens, such as open reading frame 8 and nonstructural proteins. Subjects with a greater antibody response mounted a larger memory B cell response against the spike, but not the nucleocapsid protein. Additionally, we revealed that antibodies against the spike are still capable of binding the D614G spike mutant and cross-react with the SARS-CoV-1 receptor binding domain. Together, this study reveals that subjects with a more severe SARS-CoV-2 infection exhibit a greater overall antibody response to the spike and nucleocapsid protein and a larger memory B cell response against the spike.IMPORTANCE With the ongoing pandemic, it is critical to understand how natural immunity against SARS-CoV-2 and COVID-19 develops. We have identified that subjects with more severe COVID-19 disease mount a more robust and neutralizing antibody response against SARS-CoV-2 spike protein. Subjects who mounted a larger response against the spike also mounted antibody responses against other viral antigens, including the nucleocapsid protein and ORF8. Additionally, this study reveals that subjects with more severe disease mount a larger memory B cell response against the spike. These data suggest that subjects with more severe COVID-19 disease are likely better protected from reinfection with SARS-CoV-2.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , B-Lymphocytes/immunology , COVID-19/blood , COVID-19/virology , Coronavirus Nucleocapsid Proteins/immunology , Cross Reactions , Epitopes/immunology , Female , Humans , Immunity, Humoral/immunology , Male , Middle Aged , Phosphoproteins/immunology
7.
Res Sq ; 2020 Sep 25.
Article in English | MEDLINE | ID: covidwho-807694

ABSTRACT

Discovery of durable memory B cell (MBC) subsets against neutralizing viral epitopes is critical for determining immune correlates of protection from SARS-CoV-2 infection. Here, we identified functionally distinct SARS-CoV-2-reactive B cell subsets by profiling the repertoire of convalescent COVID-19 patients using a high-throughput B cell sorting and sequencing platform. Utilizing barcoded SARS-CoV-2 antigen baits, we isolated thousands of B cells that segregated into discrete functional subsets specific for the spike, nucleocapsid protein (NP), and open reading frame (ORF) proteins 7a and 8. Spike-specific B cells were enriched in canonical MBC clusters, and monoclonal antibodies (mAbs) from these cells were potently neutralizing. By contrast, B cells specific to ORF8 and NP were enriched in naïve and innate-like clusters, and mAbs against these targets were exclusively non-neutralizing. Finally, we identified that B cell specificity, subset distribution, and affinity maturation were impacted by clinical features such as age, sex, and symptom duration. Together, our data provide a comprehensive tool for evaluating B cell immunity to SARS-CoV-2 infection or vaccination and highlight the complexity of the human B cell response to SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL